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Abstract

Applications of information oeasures in analysis, probability theory and statistics
are pointed out. [n testing the independence of random vEctors under normality, the maximum
likelihood criterion is shown to be equivalent to an entropy-based test. T"o large sample
tests based on en tropic loss of information is presented.
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1. INTRODUCTION

The idea of using measures of information to prove limit
theorems is due to Linnik (1959). He gave an information
theoretic proof of the Central .Limit Theorem on Lindeberg
conditions. Renyi (1960) provides a measure-theoretic proof of a
limit theorem for Markov chains. Only recently de Guzman (1989a)
showed that Hadamard's Inequality follows almost trivially from
the nonnegativity of the Kullback-Leibler information quantity.
Jefferson, May and Ravi (1989) suggest the use of entropy to the
scaling of some ordinal categorical data. Entropy-based goodness
of fit tests have been developed by Vasicek (1976), Dudewicz and
Van der Meulen (1981) and Gokhale (1983). In statistical pattern
recognition some rules for feature evaluation are derived from
informat ion measures (Ben--Bassat, 1982) . Srivastava (1973)
attempts to extract the "intrinsic" dimensionality of a
multivariate data set by explo~ting Shannon's information
function. In the last fifteen years, Akaike's Information
criterion (AIC) which is based on Kullback-Leibler entropy has
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found .successful application in statistical model evaluation
problems (Bo ad ogan , 1987). Hall ( 1987) shows that in kernel
density ~stimation, if the kernel is chosen appropriately,
likelihood cross-validation does result in asymptotic
minimization of Kullback-Leibler loss (information measure).
Malvestuto (1989) provides a computational method .for obtaining
the maximum entropy extension of given discrete probability
distributions.

In this paper we ~hall introduce Fisher's information, give
a measure-theoretic proof of Hadamard's 'inequality, .and propos~

an entropy-based statistic for testing independence of two iandom
vectors.

2. FISHER INFORHATION IN EQUIVALENCE/SINGULARITY DICHOTOHIES

Let (Q, F ,P) be an experiment. i.e. (Q,P) is a measurable
space and P a class of probability measure on (Q,F). We say that
an equivalence/singularity dichotomy holds if P, Q E P implies or
p:: Q or P.l. Q.

Kakutani (1946) gave the following interesting example of
... ...

dichotomy. Let (Q,P) = ( n Q1, a(n F1» where (Q1,F1), is a
i=l i=l .

sequence of measurable spaces satisfying Kolmogorov consistency
conditions.Let {Q1}. be a sequence of measures, where Q1 is on

...
(Q1,F1) for all i. If P =

...

...
Kakutani showed that if P = R P~ and ~ = R1 P. E P then P :: P

1=1 i=l
0Cl

or P~ P with the former holding iff ~ H2(P1, Pi) < 0Cl

i=l

Here H is the Hellinger distance and is defined by
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In the case where Q = F = B( R"") and P

Gaussian

Feldman

measures,

(1958) and

R'"' •

let P = IT N(O,l) and
i=l

Hajek (1858) showed

~s the set of all
eo 2

P = IT N(~l, 01).

that P = P if and
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only if

UJ 2

~ (~i + (1-oi)2) ( 00 .

1=1

2

In case (Ji = 1, P = P if and only if •
Vi E 12 , the space of square summable sequences.

What other probability measures OIl H(R) besides NCO.l) satisfy
the property? Shepp (1965) gave the following answer: if P is
a probability measure in (R,B(R) and F t is the translate of

'" ""

has finite information measure that
absolutely continous density f such

(Lebesque
is, there
that

I? both then Ri P = IT Pt for
i=l

me asu re) and P
;~xists a locally

all tj E12 if and only if P = A

J
<f ' )2

--f--- d A -: H)

Thus in a translation invariant experiment finiteness of Fisher
information as defined above IS a necessary and sufficient
condition' for an 12 - t y p e dichotomy

3. AW IWFORMATION THEORETIC PROOF OF HADAMARD'S INEQUALITY

Theorem (Hadamard's inequality) If A is an nxp real matrix of
rank p , then •

. p n 2

'It ~ a
i=l j=l ij

where A = (aij).
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Proof. Consider a p-variate random vector X = (X1, ... ,Xp ) '

which has p-variate normal density with dispersion matrix
~ = ATA. The entropies HeX) and HeXi) i = 1, .. ,p are given by

log 2n + log I~I ' H(Xi) = -- + log 2n
2 2 2 2

H(X) = -- +
2

p 1 1 1

1 n
+ log 01 2 where 01 2 = ~ a i j2

2 j=1
i=l, ... ,p

•
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•

so that

p p p 1

~P n J~ H(Xi) - -- + log 2n + log n ~ a1j2-
i=l 2 2 2 i=l j=l

The Kullback-Leibler quantity

p
H(X) - ~ H(X~)

i=l

is nonnegative and the log function is monotonic yield

p n
I~I = IATAI ~ n ~ a 1 j 2 ,

i=l j=l

which is Hadamard' s inequal i t\y. •

4. ENTROPY-BASED TESTS

Vasicek (1979) introduced a test on the composite
hypothesis of normality based on sample estimate of ent~opy. The
test was shown to be consistent against all alternatives without
a singular continuous part. Its asymptotic normality was
exhibited by Dudewicz and van der Meulen under the hypothesis of
uniformity and also under a special class of alternative
densities .. A general form of a goodness-of-fit test statistic
for families of maximum entropy distributions was given by
Gokhale (1983). The proposed test is shown consistent against an
appropriate class of alternatives and simulation and Monte Carlo
results show favorable comparison with other goodness-of-fit
tests .
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To tept the independence of two random vectors, de Guzman

(1989b) showed that a test based on entropic loss of information
is equivalent to the test based on the likelihood ratio criterion
under normality assumptions.

Let Xa, a = 1, ... ,N be
suppose X' = (X(l)' X(2)')'
correspondingly as

a random
and let

sample
II and

from n(ll,~) and
~ be partitioned

•~2l

~ll ~l2 ]

~22

Also, let

S = ~ (Xa-X)(Xa-X)'/N and A = NS with corresponding

part it ions S = [Sll Sl2] and A _ [All a12]
S2l S22 - A21 A22

Consider the null hypothesis Ho: X<l) and X(2) are independent.
Loss of information for discarding X(2) is given by

L(X) = H(X)
1

H(X<l» = Cp-m + log
•

under normality assumption.

The null hypothesis is equivalent to

Ho: ~12 = ~21 = 0

Hence L(XIHo) = Cp-m +
1

2
log I~221 .

Hence
•

W = L(X) - L(XIHo)
1

2
log

We therefore have the following theorem.
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THEOREM: For testing the null hypothesis Ho: X<l) and X(2) are
independent, the entropy based test .statistic

w
1

2
log

•

•

is equivalent to the likelihood criterion when X is multivariate
normal.

We now remove the assumption .that X is multivariate normal
and construct a nonparametric large sample test based on
entropic loss of information. L~t X ha~e density f and suppose
fn is an estimator of f based on the observations Xl, X2, ... ,Xn.

y
Let X = [z ] with g, h as the densities of Y and Z

Then L(X) = -Jf(X) log f(x) - J g(y)log g(y)

and under the null hypotheses Ho: Y and X are independent

L(XIHo) = -Jg(Y)(Z)lOg[g(Y)h(Z)]dYdZ - Jlg(y) log(y)dx

= - Jg(Y)lOg g(y)dy Jh(Z) log h(z)dz

+ Jg(Y)lOg g(y) dy = - Jh(Z) log h(z)dz,
o



W = H(X) - H(Y) - H(Z)
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so that

L(X)-L(XIHo) = - If(X)lOgf(X) dx + Ig(~) log g(y) dy

+ Ih(Z)jlOgh(Z)dZ = H(X) - H(Y) - H(Z).

Let fn, gn and hn be density estimates of f,g and h respectively •
and let

= - I fn(X) log fn(x) dx

+ Ign(y) loggn(y)dy + Ihn(Z) log hn(z)dz)

If the null hypothesis Ho is true, W should be small. If the
density estimates fn, gn and hn are suitably chosen, W can be
shown to be normal. Consider H(X)/{H(Z) + H(Y)}. Under
Ho, H(X)/H(Z) + H(Y)}= 1. Therefore the problem reduces to •
testing the null hypothesis Ho: H(X)/{H(Z) + H(Y)} = 1 against
the alternative A: H(X)/{H(Z) + H(Y)} < 1. This suggest the test
statistic

v = H(X)/{H(Z) + H(Y)}.

The asymptotic distribution of V still has to be worked out.
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